Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We discuss the results of the spectroscopic and photometric monitoring of the type IIn supernova (SN) 2023ldh. Survey archive data show that the SN progenitor experienced erratic variability in the years before exploding. Beginning May 2023, the source showed a general slow luminosity rise that lasted for over four months, with some superposed luminosity fluctuations. In analogy toSN 2009ip, we call this brightening ‘Event A’. During Event A,SN 2023ldhreached a maximum absolute magnitude ofMr = −15.52 ± 0.24 mag. The light curves then decreased by about 1 mag in all filters for about two weeks reaching a relative minimum, which was followed by a steep brightening (Event B) to an absolute peak magnitude ofMr = −18.53 ± 0.23 mag, replicating the evolution ofSN 2009ipand similar to that of type IIn SNe. The three spectra ofSN 2023ldhobtained during Event A show multi-component P Cygni profiles of H I and Fe II lines. During the rise to the Event B peak, the spectrum shows a blue continuum dominated by Balmer lines in emission with Lorentzian profiles, with a full width at half maximum velocity of about 650 km s−1. Later, in the post-peak phase, the spectrum reddens, and broader wings appear in the Hαline profile. Metal lines with P Cygni profiles and velocities of about 2000 km s−1are clearly visible. Beginning around three months past maximum and until very late phases, the Ca II lines become among the most prominent features, while Hαis dominated by an intermediate-width component with a boxy profile. AlthoughSN 2023ldhmimics the evolution of otherSN 2009ip-like transients, it is slightly more luminous and has a slower photometric evolution. The surprisingly homogeneous observational properties ofSN 2009ip-like events may indicate similar explosion scenarios and similar progenitor parameters.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract We present ultraviolet to infrared observations of the extraordinary Type IIn supernova 2023zkd (SN 2023zkd). Photometrically, it exhibits persistent and luminous precursor emission spanning ∼4 yr preceding discovery (Mr ≈ −15 mag, 1500 days in the observer frame), followed by a secondary stage of gradual brightening in its final year. Post-discovery, it exhibits two photometric peaks of comparable brightness (Mr ≲ −18.7 mag andMr ≈ −18.4 mag, respectively) separated by 240 days. Spectroscopically, SN 2023zkd exhibits highly asymmetric and multicomponent Balmer and HeIprofiles that we attribute to ejecta interaction with fast-moving (1000–2000 km s−1) He-rich polar material and slow-moving (∼400 km s−1) equatorially distributed H-rich material. HeIIfeatures also appear during the second light curve peak and evolve rapidly. Shock-driven models fit to the multiband photometry suggest that the event is powered by interaction with ∼5–6M⊙of CSM, with 2–3M⊙associated with each light curve peak, expelled during mass-loss episodes ∼3–4 yr and ∼1–2 yr prior to explosion. The observed precursor emission, combined with the extreme mass-loss rates required to power each light curve peak, favors either super-Eddington accretion onto a black hole or multiple long-lived eruptions from a massive star to luminosities that have not been previously observed. We consider multiple progenitor scenarios for SN 2023zkd, and find that the brightening optical precursor and inferred explosion properties are most consistent with a massive (MZAMS≥ 30M⊙) and partially stripped He star undergoing an instability-induced merger with a black hole companion.more » « lessFree, publicly-accessible full text available August 13, 2026
-
We present the photometric and spectroscopic analysis of five Type Ibn supernovae (SNe): SN 2020nxt, SN 2020taz, SN 2021bbv, SN 2023utc, and SN 2024aej. These events share key observational features and belong to a family of objects similar to the prototypical Type Ibn SN 2006jc. The SNe exhibit rise times of approximately 10 days and peak absolute magnitudes ranging from −16.5 to −19 mag. Notably, SN 2023utc is the faintest Type Ibn SN discovered to date, with an exceptionally lowr-band absolute magnitude of −16.4 mag. The pseudo-bolometric light curves peak at (1 − 10)×1042erg s−1, with total radiated energies on the order of (1 − 10)×1048erg. Spectroscopically, these SNe display a relatively slow spectral evolution. The early spectra are characterised by a hot blue continuum and prominent He Iemission lines. The early spectra also show blackbody temperatures exceeding 10 000 K, with a subsequent decline in temperature during later phases. Narrow He Ilines, which are indicative of unshocked circumstellar material (CSM), show velocities of approximately 1000 km s−1. The spectra suggest that the progenitors of these SNe underwent significant mass loss prior to the explosion, resulting in a He-rich CSM. Our light curve modelling yielded estimates for the ejecta mass (Mej) in the range 1 − 3 M⊙with kinetic energies (EKin) of (0.1 − 1)×1050erg. The inferred CSM mass ranges from 0.2 to 1 M⊙. These findings are consistent with expectations for core collapse events arising from relatively massive envelope-stripped progenitors.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract Quasi-periodic eruptions (QPEs) are luminous bursts of soft X-rays from the nuclei of galaxies, repeating on timescales of hours to weeks1–5. The mechanism behind these rare systems is uncertain, but most theories involve accretion disks around supermassive black holes (SMBHs) undergoing instabilities6–8or interacting with a stellar object in a close orbit9–11. It has been suggested that this disk could be created when the SMBH disrupts a passing star8,11, implying that many QPEs should be preceded by observable tidal disruption events (TDEs). Two known QPE sources show long-term decays in quiescent luminosity consistent with TDEs4,12and two observed TDEs have exhibited X-ray flares consistent with individual eruptions13,14. TDEs and QPEs also occur preferentially in similar galaxies15. However, no confirmed repeating QPEs have been associated with a spectroscopically confirmed TDE or an optical TDE observed at peak brightness. Here we report the detection of nine X-ray QPEs with a mean recurrence time of approximately 48 h from AT2019qiz, a nearby and extensively studied optically selected TDE16. We detect and model the X-ray, ultraviolet (UV) and optical emission from the accretion disk and show that an orbiting body colliding with this disk provides a plausible explanation for the QPEs.more » « less
-
Abstract We present the discovery and extensive follow-up of a remarkable fast-evolving optical transient, AT 2022aedm, detected by the Asteroid Terrestrial impact Last Alert Survey (ATLAS). In the ATLASoband, AT 2022aedm exhibited a rise time of 9 ± 1 days, reaching a luminous peak withMg≈ −22 mag. It faded by 2 mag in thegband during the next 15 days. These timescales are consistent with other rapidly evolving transients, though the luminosity is extreme. Most surprisingly, the host galaxy is a massive elliptical with negligible current star formation. Radio and X-ray observations rule out a relativistic AT 2018cow–like explosion. A spectrum in the first few days after explosion showed short-lived Heiiemission resembling young core-collapse supernovae, but obvious broad supernova features never developed; later spectra showed only a fast-cooling continuum and narrow, blueshifted absorption lines, possibly arising in a wind withv≈ 2700 km s−1. We identify two further transients in the literature (Dougie in particular, as well as AT 2020bot) that share similarities in their luminosities, timescales, color evolution, and largely featureless spectra and propose that these may constitute a new class of transients: luminous fast coolers. All three events occurred in passive galaxies at offsets of ∼4–10 kpc from the nucleus, posing a challenge for progenitor models involving massive stars or black holes. The light curves and spectra appear to be consistent with shock breakout emission, though this mechanism is usually associated with core-collapse supernovae. The encounter of a star with a stellar-mass black hole may provide a promising alternative explanation.more » « less
An official website of the United States government
